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For autonomous vehicles, 3D, rotating LiDAR sensors are critically important towards

the vehicle’s ability to sense its environment. Generally, these sensors scan their environ-

ment, using multiple laser beams to gather information about the range and the intensity

of the reflection from an object. For multi–LiDAR systems, the placement of the sensors

determines the density of the combined point cloud. I perform preliminary research on

the optimal LiDAR placement strategy for an off–road, autonomous vehicle known as the

Halo project. I use simulation to generate large amounts of labeled LiDAR data that can

be used to train and evaluate a neural network used to process LiDAR data in the vehicle.

The performance metrics of the network are then used to generalize the performance of the

sensor pose. I also, describe and evaluate intrinsic and extrinsic calibration methods that

are applied in the multi–LiDAR system.
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CHAPTER 1

INTRODUCTION

Rotating multi–beam LiDARs are an integral part of the sensing capabilities in the

emerging autonomous vehicle sector. Typically, they can operate with a 360◦ field of view

(FOV) and perform well in both dark and illuminated environments. These are very valu-

able properties since those two feats are difficult to achieve with cameras. As sensing

technology has progressed, LiDAR technology has done the same with the development

of sensors with an increasing number of beams and the usage of multiple LiDARs in a

single system. However, processing data from a multi–LiDAR system can be challenging,

and it is not always clear whether the gains of multiple sensors can justify the additional

economic and computational cost. When considering a multi–LiDAR system, it should be

designed in a manner that the sensors are calibrated to work with one another, maximizing

the contribution from all sensors. This thesis discusses my efforts using simulation to de-

termine the best placement of three LiDAR sensors in a multi–LiDAR configuration. I also

detail methods used to calibrate and co-locate multiple LiDAR sensors and analyze their

effectiveness.
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1.1 The Halo Project

The Halo Project is a research and development project within the Center for Advanced

Vehicular Systems (CAVS) at Mississippi State University (MSU) [27, 28]. This project

showcases CAVS researchers capabilities over a range of timely research areas, including

advanced batteries, lightweight materials, additive manufacturing and human–computer

interaction; the central technical challenge of the project, however, is autonomous navi-

gation in unstructured, off–road environments. To further that goal, I am working with a

team of CAVS researchers to develop a full–stack autonomy solution which is not reliant

on prior environmental knowledge. Our chosen approach to this difficult problem is to

develop that segments its environmental model into broad classes rather than attempting to

identify individual objects (it sees the forest, not the trees). While the overall autonomous

system architecture is like conventional robotics architectures, the specific environmental

and planning models incorporate unique features and require special attention to data pass-

ing structures and more complex algorithms to deal with the highly complex environment.

1.2 Motivation

My thesis discusses the development and fine–tuning a multi–LiDAR system on the

Halo project vehicle, which is a 2014 Subaru Forester developed for autonomous off–

road navigation and modified to be an all–electric four–wheel–drive vehicle. Some of the

techniques used are adopted from known methods of calibration of a single sensor. My goal

is to use sensor simulation to design a multi–LiDAR system and scale known calibration

methods to the system.
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The contribution of this thesis is an expansion on prior research [14] focused on optimal

positioning of LiDARs in a multi–LiDAR system. As part of this preliminary research, I

take a novel approach to the analysis by using a neural network to qualify the effectiveness

of different sensor poses. Additionally, I perform this analysis using a new, physics–based

simulation software designed to simulate autonomous vehicles and the sensors integrated

in them.

This thesis is organized as follows: Chapter 2 discusses prior research in the fields

of LiDAR calibration and simulation, along with an overview of the autonomous vehicle

using the multi–LiDAR system. Chapter 3 explains my methodology. Chapter 4 discusses

results. Chapter 5 summarizes my conclusions and lists potential future work.

This thesis contains work from the following publications:

W. Meadows et al., Multi–LiDAR placement, calibration, coregistration and processing on

a Subaru Forester for off–road autonomous vehicle operation, SPIE Defense + Commercial

Sensing, 2019 [25].
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CHAPTER 2

BACKGROUND

This chapter discusses background on the Halo project and the scene simulator. Addi-

tionally, it details the state–of–the–art research in LiDAR calibration, and LiDAR place-

ment strategies.

2.1 Halo Project

Since the conclusion of the 2005 DARPA Grand Challenge [35], much of the fol-

lowing effort on autonomous vehicles research has gone into developing capabilities for

structured environments. Waymo, Tesla, General Motors and others have demonstrated

vehicles which can reliably interpret man–made infrastructure, such as lane markings and

signs, and navigate accordingly. However, less than one percent of Earth is paved [33],

leaving many applications (such as military, construction, or even unpaved roads) uncov-

ered by current technology. The Halo project aims to further research for these types of

applications. It will do so by using state–of–the–art autonomous vehicle technology such

as machine learning and advanced sensors to develop a vehicle capable of autonomously

navigating an unstructured environment.

In the Halo project, the autonomous system utilizes multiple sensors to perceive its

environment: LiDARs, cameras, inertial measurement units (IMU) and global position-
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ing system (GPS) receivers. Cameras provide color imagery and are used extensively for

object detection. The LiDARs give 3D information, useful for detecting objects as well

as characterizing the roughness of the terrain, which is critical in off–road applications,

which generally, do not have well–defined or smooth roadways. The IMU measures the

pitch, yaw, and roll of the vehicle along with forces due to acceleration such that obsta-

cles can be localized effectively, even when the vehicle is traversing rough terrain. The

GPS unit employs real–time kinematic (RTK) positioning to localize the global position of

the vehicle with centimeter–level precision. The Halo system uses multiple eight–beam,

mechanically rotating LiDAR units, as opposed to a single LiDAR sensor with a larger

number of beams. This provides two primary benefits for this application. First, multiple,

distributed sensors are more likely to see around occlusions, such as trees, and avoid sensor

shadows. Second, the fields of view of multiple sensors may be strategically overlapped

to provide increased resolution in key areas of interest without “oversensing” areas of less

interest. While one LiDAR sensor is mounted on the roof of the vehicle, two additional

LiDAR sensors are mounted at an angle such that the midplanes of their fields of view

are nearly normal to the ground plane. This placement means that the beams of these two

sensors sweep across the terrain directly in front of the vehicle and intersect, forming a

grid pattern.

The Halo project utilizes all these sensors for path planning. However, the focus of this

thesis is determining the optimal placement of the multiple LiDARs. The top–mounted

LiDAR provides a 360◦ field of view, while the two side LiDARs help gather information

about the ground immediately in front of the vehicle. The three LiDAR point clouds are

5



co–registered and present a rich set of 3D data to the processing algorithms, which analyze

the surface roughness and detect obstacles. This information (as well as information from

the cameras and other sensors) forms inputs to the path planner. Figure 2.1 shows the

Forester vehicle with the three LiDAR sensors. Each of the LiDAR sensors are highlighted

in green and are shown in their general mounting locations. Figure 2.2 shows a picture of

the modified Subaru Forester in the CAVS high–bay. One front–mounted LiDAR is visible

on the front bumper.

Figure 2.1

LiDAR sensor placement.

2.2 Vehicle Simulation

Some of the earliest forms of vehicle simulation evolved during the advent of adaptive

driver assistance systems (ADAS) technology [10, 21]. These simulation platforms often

6



Figure 2.2

Halo vehicle.

tested a driver’s reaction to simulated ADAS signals [10, 21]. Maag et al. used a vehicle

simulator, constructed from a modified car chassis and a projected screen. The vehicle

body was mounted on hydraulic actuators that provided realistic motion feedback to the

driver [21]. The simulation environment provided the driver with early warnings about a

braking from a leading car and showed that ADAS was effective from a human–computer

interface standpoint. However, this type of simulation relied on perfect knowledge. Hanke

et al. took a more realistic approach by developing a framework that allowed ADAS sen-

sors to be modeled in simulation, allowing vehicle controllers to execute their own policies

and providing a platform for hardware–in–the–loop (HIL) testing [10]. This approach

more accurately resembles modern autonomous car simulation as it is based on imperfect

information provided by sensors in the vehicle. However, when considering a simulation

platform for an autonomous car, the human responses, typically associated with ADAS

simulation, are removed and replaced with the autonomous driving policy.
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A common conclusion regarding vehicle simulation is that testing algorithms such as

perception and path planning algorithms in a real-world environment can be expensive and

dangerous [4, 21, 34]. This motivates researchers and developers in the field of autonomous

vehicles to use simulated data to evaluate their algorithms. A driving force in autonomous

vehicles has been the development of commercial, on–road autonomous cars. For that

reason, vehicle simulators designed to replicate urban environments are more common

than off-road simulators [1, 4, 22].

Tallavajhula concludes that when simulating an outdoor environment, the ground truth

of that scene is not necessarily known, nor can its features be fully recognized by sensors

such as LiDARs [34]. They propose a framework for sensor simulation that involves taking

in-situ measurements of an outdoor scene and fitting a simulated model to the captured data

[34]. This is accomplished by generalizing “scene primitives” from the collected data.

Rather than representing an object such as a tree as a high–fidelity model in simulation,

their approach is to cluster non-ground points and represent them as several ellipsoids.

The ground plane was determined by fitting a triangular mesh to the collected data. The

usefulness of having a simulated environment of a real scene is that a different simulated

agent can generate sensor data from different positions and poses than were seen in the

data collection, or different sensor models may be used. The strengths of this approach are

that it is based off real data, so the accuracy of the simulated scene vs. the collected data

is known. This approach has been shown to be an effective method of simulating LiDAR

data, however, it is not applicable to sensors such as cameras. When considering cameras,

the feature resolution was increase dramatically, and lighting effects must be considered.
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2.3 MAVS

The MSU Autonomous Vehicle Simulator (MAVS) is a software library for simulating

autonomous vehicles in realistic, digital terrain [8]. MAVS provides a real–time, physics–

based simulation of LiDAR, GPS, camera, and other sensors used in autonomous navi-

gation, as well as the environmental factors that affect the performance of those sensors.

Because MAVS readily integrates with vehicle simulation software, it can be used for eval-

uating the performance of autonomous perception and navigation software. Additionally,

MAVS can be used to provide labeled data for training autonomy algorithms. Finally,

MAVS can be used to implement simulated test cases for refining autonomous behaviors,

testing performance, or simulating scenarios that are too dangerous for live tests. MAVS

was used to aid in placing the front LiDAR sensors by producing labeled, simulated data

that was used to visualize the beam pattern and point density of the combined pint cloud

[14]. In this instance, several sensor orientations were simulated, allowing the best orien-

tation to be chosen. Furthermore, MAVS has been used to generate datasets that can be

used to train a convolutional neural network (CNN).

2.3.1 MAVS Terrain Generation

MAVS terrains are generated by first creating a surface with specified low and high

frequency roughness using Perlin noise [11]. A trail is automatically created through the

terrain following the natural terrain contours. Finally, plants are “grown” over a period of

20 years to create a realistic plant distribution [2]. An example output MAVS terrain is

shown in Figure 2.3.

9



Figure 2.3

Example of MAVS terrain and lighting model.

The plant growth in the MAVS environment simulation is directed by defining “ecosys-

tems,” which contain parameters such as the typical plant type, size distribution, growth

rate, and ability to compete with other vegetation. Current MAVS ecosystems include

a forest in the Southeastern United States, a meadow, and a desert in the Southwestern

United States. The desert and meadow ecosystems in MAVS are shown in Figure 2.4 and

Figure 2.5, respectively.

2.3.2 MAVS LiDAR Simulation

The MAVS uses high–fidelity ray tracing, built on the Embree kernel [36] to simulate

the physics of each LiDAR-beam pulse interacting with the environment. Each point of

the LiDAR scan is simulated using nine rays, with the laser beam shape and divergence

10



Figure 2.4

A simulated meadow scene.

Figure 2.5

A simulated desert scene.
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approximated by the orientation of the rays. For each ray, the intersections with the en-

vironment are found and the reflected intensity is calculated with a modified, physically

based Phong model [20]. By oversampling the beam in this way, the effects such as mul-

tiple returns and mixed pixels can be simulated [8]. The effect of participating media like

dust and rain are calculated in MAVS using a power–law scattering formula [7, 19].

2.4 LiDAR Calibration

Offline calibration methods are some of the simplest, most popular approaches to in-

trinsic LiDAR calibration [26] N. Muhammad and S. Lacroix present an offline, intrinsic

LiDAR calibration method inspired by the calibration parameters used in a Velodyne, 64–

beam LiDAR system [26]. They used data collected by the multi–beam LiDAR to scan a

flat surface. A non–linear equation solver was used to tune five calibration parameters for

each of the 64 sensors associated with the beams of the device. The cost function used was

directly related to the related to the distance measured from the surface. Since the theoret-

ical variance across all points across a perfectly flat plane is zero, minimizing the variance

in the distance of these measurements is an effective and commonly used method to cal-

ibrate the LiDAR’s intrinsic range measurements [18, 26]. Intrinsic calibration, although

effective, is often not emphasized as much as extrinsic calibration because the intrinsic

properties of the sensor are often not subject to change.

Levinson and Thrun show that intrinsic calibration can be accomplished in an unstruc-

tured environment [18]. Their method is accomplished using data collected while the sen-

sor is moving through the environment, creating a more densely populated point cloud.

12



This is quite different from Muhammad and Lacroix’s method which used data recorded

in a structured, stationary environment. However, the basic goals of the cost functions are

the same. Each are trying to reduce the distance between a point measurement and a plane

with a calculated normal. However, in the case with Levinson and Thrun’s work, the nor-

mal of this plane is defined by the nearest neighbors of the point selected for measurement.

This is done under the assumption that most adjacent points lie on contiguous surfaces.

Due to computational constraints, some concessions were made such as only adjusting one

calibration parameter per sensor, per iteration. Because of this concession the cost func-

tion is not guaranteed to decrease after each iteration, whereas Muhammad and Lacroix’s

method, as a strictly offline algorithm, modifies each calibration parameter for every sen-

sor and iteration using the appropriate non-linear solver. I chose to use Muhammad’s and

Lacroix’s method for intrinsic calibration for its simplicity and because it does not require

other forms of localization hardware to combine point cloud measurements. Additionally,

modifying all calibration parameters per beam simultaneously reduces the chance that the

cost function converges to a local minimum.

For extrinsic calibration between multiple LiDAR sensors, there has been more moti-

vation to develop more automatic, online calibration methods [5, 17, 23]. He et al. [12]

examined calibrating two LiDARs in a noisy industrial/city environment. They extracted

features such as lines, planes and cones and optimized the feature matching by minimizing

geometric distances between the two LiDARs. This method worked well in that environ-

ment but might not be suitable for a more–complex wooded environment where the geo-

metric features used may not be readily available. [12]. Maroli et al. developed a method

13



to estimate roll, pitch and yaw for multiple LiDARs by using ground plane alignment for

roll and pitch and a genetic algorithm for yaw estimations [23]. Jaw et al. co–register

LiDARs by extracting 3D lines [16]. Again, this method would not be suitable for wooded

applications due to their high complexity and lack of clean lines. There are also papers that

address LiDAR/Camera co–registration, such as Habib et al. [9], Ding et al. [3], Pandey

et al. [29], and Levinson et al [17]. However, the focus of this paper is multi–LiDAR

calibration and co–registration.

2.5 LiDAR Pose Analysis

Although much research has been devoted to calibrating multi–LiDAR systems, there

is seemingly very little on the topic of how their physical positioning may affect their

performance.

Some work was completed previously on the Halo project vehicle to characterize the

coverage area of two front mounted LiDAR sensors [14]. Their paper analyzed the simu-

lated ground coverage of the beams mounted at various angles. My research builds upon

these results by simulating a wider variety of poses and uses a different metric to grade

each pose. When simulating the pose of the sensors, Hudson, Goodin, Doude, and Carruth

varied the mounting angles about one axis of rotation, leaving the other fixed. I believe

that rotating a sensor about a second axis could result in a more optimum placement of

the sensor. Additionally, Hudson et al. considered the point cloud density in front of the

vehicle as the grading metric for each sensor placement. Alternatively, I will analyze the

effectiveness of each orientation using a neural network, similarly how the data would be
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processed by the autonomous driving computer. I acknowledge that the point cloud density

in certain areas of the point cloud generated by the sensors does not necessarily correlate

to the autonomous driving computer’s ability to make a correct classification.
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CHAPTER 3

METHODOLOGY

The LiDARs simulated and evaluated were Quanergy M8 LiDARs [32]. This sensor

was a rotating, 3D, scanning LiDAR with eight beams paced approximately three degrees

apart. The Quanergy LiDARs were chosen based on an overall assessment of their capa-

bilities and cost. Furthermore, researchers at CAVS had experience with these LiDARs on

previous projects related to industrial autonomous vehicles [38, 37]. Figure 3.1 shows a

picture of the Quanergy M8 LiDAR and Figure 3.2 shows the eight beam locations rela-

tive to the z = 0 plane of the LiDAR (this would be the horizontal plane if the LiDAR

is mounted upright). The LiDAR provides 360◦ coverage with eight beams, and scans at

rates from 5 to 20 Hz. The point cloud data is output through a gigabit ethernet interface.

3.1 LiDAR Pose Analysis

The multi–LiDAR system involved in this paper consisted of three Quanergy M8 Li-

DAR sensors.[32]. One sensor was mounted in an upright position at the top of the vehicle,

giving it a relatively unobscured, 360◦ view of the environment. The other two sensors

were mounted at oblique angles on either side of the front bumper as shown in figure 2.1.

The vehicle, a modified Subaru Forester, was designed as an off-road-capable autonomous

vehicle. The intent of placing the additional LiDAR sensors low and near the outside of the
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Figure 3.1

Quanergy M8 LiDAR.

Figure 3.2

LiDAR beams.
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car was to gather more information about the terrain directly in front of the vehicle and near

its sides. The experiments described in subsequent sections were intended to determine the

optimal positioning of the two sensors at the front of the vehicle while the top LiDAR re-

mained fixed. The positions of the front sensors were mirrored such that rotations applied

to one, were mirrored when applied the other LiDAR.

I propose that the optimum positioning of the LiDARs in this multi–LiDAR system

can be determined using simulated data evaluated using a neural network. This method is

focused on applications in autonomous vehicles, since most autonomous systems rely on

neural networks to classify objects in their environment. This makes the neural network

that processes LiDAR data in the vehicle, the most relevant qualifier of how well the Li-

DAR positioning may perform in the vehicle. Simulated data was generated for all LiDARs

with various poses on the vehicle. Each pose was defined by two Euclidean angles, α and

β, representing rotations about the x and y axis of the vehicle, as shown in Figure 3.4.

There was no need to rotate the sensor about the z axis, as this is the axis of rotation of

the beams and would have no effect on the data. For example, when α = 90◦, the tops

of both sensors are pointed outwards from the sides of the vehicle, and when α = −90◦,

both sensors are pointed inwards to the vehicle. Similarly, when β = 90◦ the tops of

the both sensors are pointed forward relative to the vehicle, and when β = −90◦, they

are oriented backwards. Throughout this analysis, I considered a limited range of viable

poses: α = [45◦, 90◦] and β = [31◦, 68◦]. This range was chosen for practicality, reducing

the search space and recognizing the physical limitations in the mounting system in the

bumper.
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For each simulation at a given pose, the data generated was used to train SqueezeSeg

[39], the neural network used to process data on the vehicle. SqueezeSeg is a convolutional

neural network–based model for LiDAR point cloud segmentation. SqueezeSeg projects a

3D LiDAR point cloud onto a spherical surface and uses a 2D CNN to predict point-wise

labels. Structurally, it is based off SqueezeNet [15], and it uses the squeeze and excitation

network [13] strategy. Other similar methods include PointNet by Qi et al. [30], however,

PointNet is more computationally complex than SqueezeSeg.

Figure 3.3

Vehicle coordinate system.
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Figure 3.4

Rotation coordinates for the front LiDARs.

3.1.1 MAVS Simulation

Rather than performing tedious LiDAR data collection and labeling, MAVS was used

to generate the large amounts of labeled data required to train and test SqueezeSeg. In

simulation, three instances of the Quanergy M8 LiDAR were initialized at their positions

on the vehicle model as discussed in section 3.1. Next, randomly generated environments

based on three common types of biomes, were created. These biomes included a forest,

a meadow and a desert, each with a flat surface and appropriate vegetation. Each point

within the environment was labeled as either ground, vegetation, or a tree. In the simulated

LiDAR data, these labels are represented at 1, 2, and 3 respectively. Simulated data from

each sensor was generated as the vehicle moved through the environment. Rather than
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generating data from the sensors using a very large environment, it was more computation-

ally efficient to generate data of the sensors moving through multiple, smaller instances

of the randomized environment. The output data consisted of a sparse point cloud as is

typically observed with LiDAR data. Each point in the point cloud contains data about its

coordinates in 3D space, the intensity of the reflection as seen by the LiDAR, and the label

of the object associated with that point.

3.1.2 Data Projection

Each simulated data point consisted of vector a = {x, y, z, ρ, l}, where x, y, and z rep-

resent the location of each point in 3D coordinates. ρ represents the intensity of the reflec-

tion measured by the sensor, and l is a label associated with each point. It is worth noting

that MAVS generates the labels of each point automatically. If the analysis used collected

LiDAR data, then point labels would have been created manually, either by some algorithm

or by humans. In either case, the labeling process would have been time–consuming and

would have most likely contained errors due to the large number of points involved. This

provided a significant advantage to using simulated data.

Prior to training the neural network, the LiDAR data was transformed to spherical

coordinates. This was done to represent the sparse, three–dimensional LiDAR point cloud

as a denser two-dimensional image that can be used in a convolutional neural network

such as SqueezeSeg. The process of doing so was largely adapted from Wu et al. [39].

For each pose in a simulated scene, point cloud data from all three LiDARs was combined

in a unified, 3D coordinate system. Similarly to [39], only data with a positive valued
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x-coordinate was considered. However, unlike Wu et al. [39], I was able to utilize data

spanning the full 180◦ front field of view of the vehicle rather than being limited to a

90◦ FOV. Using equations 3.1 and 3.2, the H × W × C tensors used as the input for

the network were formed. H and W respectively describe the height and width of the

tensor. Values of zenith (θ) and azimuth (φ) angles were evenly sampled to form the

H ×W image using equations 3.1 and 3.2. The vector C contains similar information to

a, where C = {x, y, z, ρ, d, l}. d represents the range to the target in meters, calculated

by d = (x2 + y2 + z2)0.5. In the case that there were multiple data points sampled to one

index ofH andW , the point with the highest intensity value was used. If there was no data

associated with a pixel, C remained a zero vector as it was initialized. This introduced a

fourth label, 0, indicating an unknown data point that was representative of free space.

θ = arcsin
z√

x2 + y2 + z2
(3.1)

φ = arcsin
y√

x2 + y2
(3.2)

Previously with SqueezeSeg and other neural networks designed to process data from

a single LiDAR, H is equal to the number of beams in the sensor. This is because when

considering single LiDAR, the data in the H dimension is limited by the number of beams.

However, this is not the case in a multi–LiDAR system where the sensors are mounted

at oblique angles relative to one another. The limited vertical resolution of one LiDAR

can be supplemented by the high angular resolution of another. For this reason, I was

free to select H based upon the computational efficiency and performance of the neural
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network. Prior to performing the pose analysis, I compared the performance capabilities of

SqueezeSeg trained on simulated data with various values of H . Each of these trials used

a common dataset that had been resampled to varying values of H in order to determine

which resolution would be ideal for the pose analysis.

3.1.3 SqueezeSeq Qualification

I used SqueezeSeg as a benchmark for several simulated poses of the LiDAR sensors.

For each pose, equal sized batches of labeled data were generated to train and evaluate the

network. The batch sizes and network parameters are listed in table Table 3.1. Configura-

tion parameters not listed retained their default values. The labels used to train the network

were the labels introduced in section 3.1.2. Each frame in a batch was converted to im-

ages using the process described in section 3.1.2. During this process the total mean and

standard deviation of all the images in the batch were calculated. The vectors of the mean

and standard deviation were used to normalize each of the batches by subtracting the mean

and dividing by the standard deviation. The network was trained by starting by initializing

pre-existing weights, included with SqueezeSeg, that were generated by training using the

KITTI dataset [6, 39]. The network was then trained with the MAVS simulated imagery

using the parameters listed in table Table 3.1.

The trained network was evaluated using a separate evaluation set of images, not in-

cluded in the training set. I used the confusion matrix from the evaluation set to classify

the performance of each sensor pose. Particularly, I used the user’s accuracy calculated

from the confusion matrix according to equation 3.3 as the accuracy metric.
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Table 3.1

SqueezeSeg training and evaluation configuration parameters.

SqueezeSeg Network Parameters
Learning rate 0.005
Learning decay rate 0.1 per 20,000 iterations
Number of iterations 25,000
Momentum 0.9
Input size 8× 512× 5
Batch size 12 images
Training set size 1296 images
Evaluation set size 324 images
Number of classes 4

UserAccuracy =
TruePositives

TotalClassifications
(3.3)

3.2 Intrinsic LiDAR Calibration

For each of the three Quanergy M8 LiDARs, I used Muhammad’s and Lacroix’s method

to perform the intrinsic calibration [26]. I recorded N = 4 measurements taken of a flat

wall at one–meter increments ranging from two to five meters. A greater range of measure-

ments would have been preferred, however, the 21.45◦ vertical FOV [32] of each LiDAR

would require a larger wall than I readily had access to. I found it more beneficial to make

single measurements, where all beams would simultaneously intersect the wall than at-

tempting to limit the vertical FOV. The point cloud data was segmented by restricting the

azimuth angle, φ, for each measurement. This was done by observation such that every

point that did not lie on the reference wall was removed from the data. The same restric-
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tion of the azimuth angle was applied to data from each beam so that each sensor had a

nearly equal number of data points associated with it in order to remove bias from the

calibration. The point cloud data was represented in three dimensional coordinates, where

each point was represented by a position vector [x, y, z]. For a single scan at a given

distance, I used principal component analysis to determine the plane that best fit the data.

The normal vector of this plane, ~n was determined by the third principal component, as

the first two components define the axes along the plane. This plane is representative of

the ideal, flat wall that I intended to measure. As seen in equation 3.4, the error of each

scan, ei was calculated as the perpendicular distance of each point from the plane after the

current calibration parameters, K were applied. [Px, Py, Pz] represented the calibrated

position vector, and [x̄, ȳ, z̄] was the mean position vector for a scan. The mean squared

error (mse) over all scans was calculated according to equation 3.5.

ei = ([Px, Py, Pz]]− [x̄, ȳ, z̄]) · ~n (3.4)

mse =
1

N

N∑
i=1

mean(e2i ) (3.5)

The calibration parameters contained inK were defined by Muhammad and Lacroix as

the distance correction (Dc), vertical offset (Vo), and horizontal offset (Ho) in meters, and

the vertical angle (θc), and rotational angle (ε) in radians.

Equations 3.8, 3.9, and 3.10 show how the calibrated point coordinates, Px, Py, and

Pz, are calculated from these five calibration parameters [26]. Parameters such as Dret, the

Euclidean distance from the sensor to a point in meters and Dxy, that distance projected
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onto the xy–plane were calculated usingDret = (x2 + y2 + z2)
0.5 andDxy = (x2 + y2)

0.5.

βc represents the rotational angle of the LiDAR in radians after the rotational angle correc-

tion has been applied (βc = tan−1( y
x
) − ε). Because manufacturing variances can occur

independently between each transmitter and receiver in the LiDAR sensor, each beam had

its own set of calibration parameters associated with it.

D = Dret +Dc (3.6)

Dxy = D ∗ cos(θc)− Vo ∗ sin(θc) (3.7)

Px = Dxy ∗ sin(βc)−Ho ∗ cos(βc) (3.8)

Py = Dxy ∗ cos(βc) +Ho ∗ sin(βc) (3.9)

Pz = D ∗ sin(βc) + Vo ∗ cos(θc) (3.10)

The calibration parameters stored in K were determined iteratively using a non–linear

programming solver, fmincon, from MATLAB 2017b with the optimization toolbox, to

minimize the mse of the point cloud data as different calibrations were applied. The func-

tion fmincon was run with its default settings, aside from increasing the “Max Function

Evaluation” parameter from its default value of 3000 to 40,000 to remove it as a binding
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constraint. By default, fmincon uses the interior point algorithm to minimize a func-

tion [24]. The objective function was min
K
E(K, x) where E(K, x) was a function that

calculated ei for a given LiDAR point cloud and calibration matrix, K such that mse is

minimized. The output of this function, K was represented as an 8 × 5 numeric matrix.

Each row contained the five calibration parameters for a single beam in the sensor. Prior

to the minimization of mse, K was initialized to its expected values, Kn = [0, 0, 0, v, 0]

where v is the advertised vertical angle for each of the n beams [32].

3.3 Extrinsic LiDAR Calibration

To combine data from all three sensors to a common frame of reference, extrinsic

calibration was needed. To facilitate this the LiDARs were installed on the vehicle and

positioned with poses that were within our parametric search space. I used Quanergy’s

Q-view application to visually inspect and align common features within the common area

of interest between all three sensors [31]. Furthermore, the application was used to refine

the calibration after the user had sufficiently aligned the images. Extrinsic calibration was

performed on two sensors at a time and Q-View produced the position and quaternion ro-

tation angles to combine the separate point clouds. With the precise rotation and positional

offsets known, point cloud data from each LiDAR in the system was transformed to the

same frame of reference.
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CHAPTER 4

RESULTS

Results from simulation and training SqueezeSeg and the evaluation of the calibrations

are discussed below.

4.1 Data Projection

Figure 4.1

Simulated LiDAR data.
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Figure 4.2

Label classification accuracy vs. the vertical resolution of the input image.

Figure 4.3

Average number of data pixels per image vs. increasing vertical resolution.
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Figure 4.1 show the labels of individual LiDAR images after they are formed using

the spherical projection process described in section 3.1.2. Each image presents some

common and some unique data when shown in the combined view. Figure 4.2 depicts the

label classification accuracy of SqueezeSeg vs. several different vertical resolutions for the

input data. “Label classification accuracy” is defined at the percentage of labeled pixels

classified correctly, not considering pixels with an “unknown” label. Doing this prevents

the results from being skewed by high classification accuracy for pixels with the unknown

label, since it is quite trivial for the neural network to learn how to classify null pixels with

perfect accuracy. From Figure 4.3, increasing the vertical resolution increases the average

amount of points in each image, as expected. However, doing so significantly increases the

number of unknown points in the image. Figure 4.2 shows that the SqueezeSeg performed

best when using the vertical resolution that is native to a single LiDAR. It is likely that the

addition of more null pixels with higher vertical resolutions reduces the effectiveness of

convolution operations in SqueezeSeg. It does seem that the classification accuracy does

tend to increase with higher vertical resolutions, but the gains are not nearly significant

enough to warrant the additional processing power required for a larger input. To compare

training images with different vertical resolutions, Figure 4.4 shows the image sampled

with H = 8 and Figure 4.5 shows the same image sampled with H = 64.

4.2 CNN Performance

Figure 4.6 shows the user accuracy of the trained segmentation neural network across

all evaluated values of α and β. Some linear interpolation was done to produce an evenly
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Figure 4.4

Simulated LiDAR data with an 8px vertical resolution

Figure 4.5

Simulated LiDAR data with a 64px vertical resolution

Figure 4.6

User accuracy of CNN across all tested positions
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Figure 4.7

The normalized number of data points contained in an image set for each LiDAR pose.
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sampled figure. Upon inspection it is difficult to identify an ideal pose for the sensors.

Values of α near 90◦ produces varying results that include the highest and lowest accuracy

rates observed. Lower values of α resulted in more consistent performance. Figure 4.7

depicts the total number of data points registered in the image set for each pose. When

considering the amount of data in the image set, the positioning of the LiDAR can affect

how much data falls within the field of view of the image. In our simulation, smaller

values of α tended to produce data that fit better within the vertical field of view of the

image. A clear trend across our simulations was that the amount of data seen by the neural

network increased as α decreased and β increased, producing the maximum number of

points in the (45◦, 68◦) pose. The less data at higher values of α could also correlate with

my observation of inconsistent user accuracy at those poses.

4.3 LiDAR Calibration

The minimizing function was able to find local minimum that satisfied its default op-

timality constraints within 40,000 iterations. Computationally, the program required ap-

proximately one minute to converge on a modern desktop workstation. This is significantly

faster than the amount of time required suggested by Muhammad and Lacroix. Undoubt-

edly, the increase in speed was because I was calculating the calibration matrix for a LiDAR

with several fewer beams (8 vs. 64 beams). An example of a calibration matrix for one

LiDAR is listed in Table 4.1.

Unlike the 64 beam LiDAR used to develop this calibration method, the Quanergy M8

LiDAR does not seem to exhibit any characteristic patterns in its calibration parameters,
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Table 4.1

Calibration Parameters for one LiDAR.

Beam Dc(m) Vo(m) Ho(m) θc(rad) ε(rad)
7 -0.01473 -0.08415 0.0212 0.05277 -0.00551
6 -0.0107 -0.01875 0.01387 -0.01989 -0.00445
5 -0.01161 -0.01305 -0.00321 -0.06718 0.00205
4 -0.00563 0.09364 0.00566 -0.14457 -0.00078
3 -0.02251 0.00824 0.02617 -0.17176 -0.00777
2 0.00152 0.10712 0.01867 -0.2434 -0.00533
1 0.01086 0.0199 -0.00646 -0.28688 0.00155
0 -0.00565 0.08957 0.03551 -0.31713 -0.00771

such as the alternating horizontal offsets seen in the former. All parameters seem to be

small, nominal values as expected, except the vertical offset for some beams, which some-

times deviated approximately 10 cm from its expected value of 0. The effect of this can be

seen in beam zero and two (the first and third beams counted from the bottom) in Figure 4.8

and Figure 4.9. Despite these dramatic alterations to the image, the calibration reduced the

average variance across all measurements by factors ranging from approximately 20–50%

as seen in Table 4.1. Additionally, Table 4.3 shows that the maximum error of the mea-

surements of the flat wall decreased by a significant magnitude for each LiDAR.

Figure 4.10 and Figure 4.11 show a scans of a flat surface after performing the extrinsic

calibration between all three LiDARs and co–locating each of their point clouds. Upon

inspection of the front view, Figure 4.10, there are several visual cues that indicate that the

extrinsic calibration is not precise. The target is a rectangular board positioned so that its

height was normal to the floor. Examining the top of the board the beam from the right

LiDAR (in green) extends approximately 5cm above the extent of the beams from the left
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Table 4.2

Average Variance of the LiDAR Data Before and After Calibration.

Average Variance
before Calibration (mm)

Average Variance
after Calibration (mm) Improvement

LiDAR A 168.0 84.64 49.62%
LiDAR B 55.17 42.83 22.36%
LiDAR C 65.44 31.92 51.22%

Table 4.3

Maximum Distance Error of the LiDAR Data at 5m Before and After Calibration.

Maximum Difference
before Calibration (cm)

Maximum Difference
after Calibration (cm) Improvement

LiDAR A 13.3 9.5 28.57%
LiDAR B 4.7 4.1 12.77%
LiDAR C 5.1 4.1 19.53%

Figure 4.8

Wall measurement without calibration.
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Figure 4.9

Wall measurement with calibration.

LiDAR (in blue). Additionally, I found that the right LiDAR data was rotated relative to

the top LiDAR (in red) so that some beams fall within top sensor’s beams of the wall while

others have ends that do not. The side view, Figure 4.11 also shows that the sensors are

generally co–registered but lack further refinement. The slight angle of the wall in the

xz–plane is the result of a slight downward tilt in the top LiDAR. For this visualization

all points were transformed to the frame of reference of the top LiDAR, giving a slightly

skewed perspective.

The point cloud data shown in Figure 4.12 depicts the simultaneous beam pattern of

all three sensors. The intersection of the three point clouds creates two areas of interest

in front of the vehicle shown by Figure 4.13. The dense area of interest is representative

of where three point clouds intersect, and the less dense area of interest is created by the

intersection of at least two point clouds. The previous Figure 4.10 was measured within

the dense area of interest. For the general sensor placement for the Halo vehicle, the area
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Figure 4.10

Front view of a flat wall.

Figure 4.11

Side view of a flat wall.
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of interest was located directly in front of the vehicle. The densest area is directly in front

of the vehicle and four to eight meters in front of the vehicle, and the less dense area, spans

a wider field of view and extends to the maximum range of the sensors.

Figure 4.12

View of the co–located LiDAR point cloud data indoors.
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Figure 4.13

Top view of the two areas of interest for the vehicle.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The usage of simulated data was crucial for the parametric, LiDAR pose analysis. The

alternative in situ collection of such a large amount of data is logistically infeasible, es-

pecially considering the effort that would be required to label such data at single pixel

resolution. Additionally, simulation facilitates a high level of precision and consistency

that cannot be expected from in situ collection. I believe that the data is valid since I have

observed similar performance from SqueezeSeg using either the simulated MAVS data or

the KITTI data. MAVS continues to undergo further research and development. Currently,

efforts are being made to evaluate is ability to generate realistic data from other sensors

such as cameras.

Interpreting data from chapter 4.2, I determined that the best LiDAR positioning for the

application of the Halo vehicle is approximately α, β = (50◦, 35◦). Considering the user

accuracy, this is not where the peak accuracy occurred. Since the peak accuracy occurred

in a range that was particularly unstable, I determined that the more stable range of angles

was more desirable. This is especially true considering the body of the vehicle can vary

several degrees relative to the ground as the vehicle moves. Additionally, this rotation lies

in a range of above–average–density data which can contribute to the neural network’s
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accuracy. The number of points within the area of interest, and the shape of the area of

interest are largely dependent on the positioning of the LiDAR sensors. Mounted at near

perpendicular angles, the sensors will have a very small intersection producing the area

of interest. Contrary, mounted at nearly parallel angles, the sensors will have the largest

intersection of data and therefore the largest point cloud density.

When considering processing data from a multi–LiDAR system, I identified two vi-

able methods. The first is the one presented in section 4.1 where data from all sensors

is combined into an image representative of the system’s area of interest. In the case of

SqueezeSeg, this should be done without attempting to increase the vertical resolution of

the area of interest, as I found that decreases accuracy and increases the computational

complexity. An effective, alternative method of processing data from a multi–LiDAR sys-

tem could be to use multiple, independent instances of SqueezeSeg for each LiDAR, where

each instance would classify data from its respective sensor and consider the intersection

between sensors. This would create multiple regions of interest and achieve a similar level

of intersection in the images. The benefit of this approach is that each instance of squeeze

set would operate using the native resolution of the eight–beam LiDAR, and more infor-

mation can be processed, resulting in a wider FOV for the LiDARs if desired. In this

implementation, the designer likely gains linear scalability and more efficient processing

at the cost of higher processing overhead.

Considering the LiDAR rotation analysis, particularly Figure 4.6 and Figure 4.7, I am

not confident that my simulation discovered an absolute optimum position for the total

maximum range of rotation angles. This is because I only considered a limited range
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of poses that were applicable to the Halo vehicle. Further testing could discover more

optimal posed. For example, as seen in Figure 4.7, the total number of points per image set

seems to consistently increase as α achieves values lower than our test interval. The higher

density of points could yield better classification results and may be explored in the future

by considering a wider range of poses that can be deployed on a future vehicle.

The results from chapter 4.3 show that for the individual LiDARs, intrinsic calibration

beyond the factory calibration can improve the accuracy. By showing that calibration using

my method improves the error at every range tested, I can conclude that the intrinsic cali-

bration improves the accuracy of the measurement at all tested ranges without introducing

inaccuracies at some ranges. Error could be introduced to a point cloud if a calibration min-

imizes the total mean squared error but introduces less significant, localized errors. Using

a flat wall as an intrinsic calibration target is beneficial because of its simplicity. However,

the flat wall’s simplicity may be the cause of the large vertical offsets seen in some of the

beams when using this calibration method. Although, I’ve found no significant evidence

of correlation between the vertical offset parameter and other calibration parameters, it is

possible that some correlation exists. Such a correlation could explain the calculation of

large vertical offsets while continuing to reduce the mean square error. Using a calibration

target with more sophisticated geometry would increase the complexity of the calibration

procedure but may increase independence between the calibration parameters.

Additionally, more precise methods for extrinsic calibration should be investigated.

The simple Q–view tool was not adequate for the type of LiDAR system built for the Halo

vehicle. Q–view’s fine–tuning algorithm did not perform well when there was not signifi-
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cant intersection between the two point clouds under calibration. Additionally, performing

the course alignment from the human perspective is quite difficult and time consuming.

This task becomes more complicated and less accurate as the rotational axis of each sensor

approaches orthogonal angles with other LiDAR sensors such as with the case of the Halo

system.

CAVS has also recently invested in developing a dedicated, off-road autonomous mo-

bility test track. A 50-acre site incorporates uneven terrain, mature trees, lowlands, and

various natural features with which to benchmark autonomous system capability. Plans

are in place to add further differentiation of soil types, including sand and rocks. The au-

tonomous vehicle test site will provide a realistic and varied environment with which to

validate the autonomous system and the effectiveness of the LiDAR system, trained using

simulated data from MAVS, to generalize real world input.
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